External beam radiotherapy incorporates treatment techniques such as three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), image-guided radiotherapy and volumetric modulated arc therapy to deliver high-energy radiation to cancer. The use of IMRT for cancer treatment is also associated with significant costs for patients in low–middle-income countries. The purpose of this study was to compare the dosimetric properties of 3DCRT and IMRT treatment plans for the external beam irradiation of patients with prostate cancer (Pca) to ascertain the superiority of IMRT in terms of dose homogeneity, conformity and dose limitation to organs at risk (OAR) in a resource-limited setting. One hundred and sixty treatment plans for 80 patients were created using 3DCRT and IMRT on the Eclipse treatment planning system (version 13.6). Data were collected and assessed from the dose-volume histogram of each plan. The conformity and homogeneity index (HI) for each of the plans were calculated. The doses to the OAR were also recorded and evaluated. The mean HIs for the IMRT and 3DCRT treatment techniques were 0.04 ± 0.02 (range: 0.01–0.011) and 0.09 ± 0.02 (range: 0.04–0.016), respectively. The mean conformity index (CI) for IMRT and 3DCRT techniques were 1.257 ± 0.112 (range: 0.99–1.58) and 1.302 ± 0.196 (range: 1.10–2.26). IMRT had a better significant mean HI and CI compared to 3DCRT. Generally, for this study, IMRT had better organ sparing compared to 3DCRT. The mean doses for the OARs ranged from 4.3–74.6 Gy for IMRT and 3.1–75.9 Gy for the 3DCRT technique. Overall, this study demonstrates that IMRT may offer an enhanced therapeutic profile, potentially reducing toxicity to the patient and ensuring more precise dose delivery to the target volume compared to 3DCRT in PCa external beam irradiation.