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Abstract

Objective: Upper gastrointestinal (UGI) cancers, including esophageal (EC) and gastric 
(GC) cancers, pose a significant global health challenge. Previous studies have indicated 
a fundamental correlation between basophil count and the risk of UGI cancer. However, 
confirming a causal relationship demands further investigation. Mendelian randomization 
(MR) provides a critical method for evaluating the possible causal connections between 
peripheral circulating blood cells (PCBCs) and UGI cancer.

Method: Our study comprehensively employed a two-sample MR analysis. We used 
publicly available genetic data to survey the causal association between PCBC and UGI 
cancer. We used inverse variance weighting and weighted median for MR analyses and 
sensitivity analyses to assess heterogeneity and pleiotropy.

Results: In terms of the association between PCBCs and UGI cancer, we found that baso-
phils count (EC: OR = 1.416, 95% CI = 1.125−1.783, p = 0.003; GC: OR = 1.623, 95% CI = 
1.052−2.505, p = 0.029) were all strongly correlated with both EC and GC. Interestingly, 
Basophil count was a risk factor for both EC and GC. However, no significant correlations 
were seen between eosinophil, monocyte, lymphocyte or white blood cell count and UGI 
cancer.

Conclusion: The findings of this research corroborate the idea that basophils might serve 
as a fundamental risk factor for UGI cancer. Further exploration of the underlying mech-
anisms driving this relationship could provide crucial understanding helpful in creating 
prospective preventive and treatment methods for UGI cancer.
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Introduction

Upper gastrointestinal (UGI) cancers, particularly esophageal cancer (EC; 510,716 new cases in 2022) and gastric cancer (GC; approximately 
1 million new cases in 2022), present substantial global health challenges, marked by significant morbidity and mortality rates [1]. Identify-
ing novel risk factors and underlying mechanisms is crucial for developing effective prevention and early detection strategies [2, 3]. While 
numerous studies have explored the correlation between various types of peripheral circulating blood cells (PCBCs) and cancer risk, the 
causal nature of these relationships remains under active investigation [4, 5].

Basophils, a type of granulocyte involved in immune responses and allergic reactions, have been highlighted in recent research as poten-
tially linked to an increase risk of UGI cancer [6]. Previous observational studies have suggested that a higher basophil count is related to a 
higher risk of UGI cancer [7]. However, these observational studies are susceptible to deviation and confounders, thus limiting their ability to 
confirm causality [6, 7]. Mendelian randomization (MR), a method that provides conclusive causal evidence by analysing the association of 
genetic variation with exposure and discovery, offers a promising replacement for randomised controlled trials (RCTs) [8]. By utilising genetic 
variants that affect basophil levels, MR facilitates a more rigorous examination of basophils’ role in UGI cancer development, minimising 
biases commonly present in observational studies [9–11].

In the present study, we investigated the histophysiological and pathophysiological engagement of PCBCs in the carcinogenesis of cancers of 
the GI tract using MR analysis, which was achieved through a recent Genome-Wide Association Study (GWAS) focusing on PCBCs and UGI 
cancers and statistical summaries from the UK Biobank [12]. Our study is dedicated to exploring the causal association between PCBCs and 
UGI cancers, with a special focus on those in tumor initiation, progression and treatment resistance. We present an extensive MR study that 
not only identifies specific PCBCs associated with UGI cancers but also addresses the constraints in current research. Our goal is to provide 
valuable insights that could refine future methodologies and advance etiological research. This work is intended to support precision preven-
tion, control and the development of innovative therapeutic approaches. Additionally, we aim to develop personalised treatment strategies 
targeting the specific PCBCs vulnerabilities of UGI cancer.

Materials and methods

Study design

Causal associations between PCBC and UGI cancer were assessed using a two-sample MR analysis. MR uses genetic variants as a proxy for 
risk factors. To ensure reliable causal inferences, the instrumental variables (IVs) used in MR must meet three key assumptions: (1) the genetic 
variant must be directly related to the exposure; (2) the genetic variant is not related to potential confounders between the exposure and the 
finding; and (3) the genetic variant affects the finding only through the exposure and not through other pathways Figure 1.

Data sources for exposure and outcome

GWAS statistical summary for each PCBCs trait is publicly available from the GWAS catalogue (accession numbers: GCST0001391 to 
GCST0002121) [12]. We used keywords for each cancer to find IDs from (https://gwas.mrcieu.ac.uk/). Cancer IDs included: ebi-a-
GCST90018841 (EC), ukb-saige-151 (GC). Finally, we used summary statistics from the latest large-scale Blood Cell Characterisation 
Genome Study (BCX), conducted by the blood cell consortium with participants of European ancestry [12]. The GWAS database is a fully 
comprehensible gathering of genetic variants and their connections to a diversity of traits or diseases. It provides a powerful resource for 
researchers and clinicians who are interested in developing an understanding of the genetic basis of complex traits and diseases. From this 
GWAS, we derived genetic variants associated with circulating leukocyte, lymphocyte, monocyte, neutrophil, eosinophil and basophil count 
levels. Based on EC IDs, we downloaded EC data for 476,306 Europeans (n = 998 case patients and 475,308 control participants) from the 
GWAS (https://www.ebi.ac.uk/gwas/). The UK Biobank is a large-scale biomedical database and research resource that is designed to allow 
researchers to seeking the hereditary, environmental and lifestyle factors that influence various diseases and health outcomes. The database 
includes health and genetic information from over 500,000 participants in the United Kingdom, making it one of the most comprehensive 
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biomedical resources of its kind. Based on the ID of GC, we downloaded the data from UK Biobank including 393,926 European individuals 
(n = 554 case patients and 393,372 control participants) for EC (https://www.ukbiobank.ac.uk).

Instrument selection

We implemented a more stringent correlation threshold (p < 5 × 10^-9) for the selection of genetic IVs, given the large number of single 
nucleotide polymorphisms (SNPs) that have genome-wide significance (p < 5 × 10^-8) for PCBCs traits [12]. These IVs were identified by 
grouping them according to the 1,000 Genomes Project’s Linkage Disequilibrium (LD) reference panel, with a threshold of R^2 < 0.001 at a 
distance of 1,000 kilobases (kb). Given the relatively limited size of the GWAS data from PCBCs, we employed a p value threshold of 5 × 10^ -8  
p-value threshold and a less significant clustering threshold (R2 < 0.001 at a distance of 1,000 kb) [13]. To ensure the reliability of the tool, 
we selected IVs with an F-statistic of more than 10, identifying them as strong tools for subsequent analyses. We then extracted these IVs 
from the summary statistics regarding UGI cancer outcomes according to the methodology of previous studies [14], excluding any IVs with 
a potential pleiotropic effect (p < 10^-5) on UGI cancer. To maintain consistency in the analyses, we synchronised the SNPs in the exposure 
dataset and in the findings dataset to ensure that the effect estimates of the same effect allele remained consistent. Alleles with intermediate 
effect frequencies (EAFs >0.42) or SNPs incompatible with the allele were excluded from our analyses [13].

Figure 1. Study design flowchart. The first assumption is that the instrument variables are strongly related to the exposure. The second assumption 
specifies that the instrument variables are not associated with any confounders. The third assumption establishes that the instrument variables influence 
the outcome solely through the exposure. Abbreviations include SNPs for single-nucleotide polymorphisms, LD for linkage disequilibrium, IVW for inverse 
variance weighted and weighted median, MR-Egger and MR-PRESSO.
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Statistical analysis

In our research, we used a series of Genetic Variants as IVs rather than relying solely on an allele score. This approach was chosen to thor-
oughly examine key assumptions, uncover potential pleiotropy and facilitate more effective sensitivity and multivariable MR analyses [11]. 
To assess the consistency of our findings under different assumptions about heterogeneity and pleiotropy, we utilised four distinct MR meth-
odologies: The inverse variance weighted (IVW), Weighted Median, MR-Egger and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO). 
The IVW method, employing a random-effects model, served as the primary analysis framework for all four sets of IVs. Cochran’s Q statistical 
measurements and the appropriate p-values were used to test for heterogeneity among the elected IVs.

Our study also included analyses with more stringent conditions. In the IVW approach, under the hypothesis that all genetic variants are 
effective, if many SNPs are influenced by horizontal pleiotropy, bias will occur [15]. Conversely, the weighted median approach, effective 
when less than 50% of variants exhibit horizontal pleiotropy, presumes most genetic variants are valid [16]. In cases where over 50% of 
variants are affected by horizontal pleiotropy, we evaluated the strength of our genetic instruments through F statistics, considering a mean  
F < 10 indicative of weak IVs [17]. 

Furthermore, to rule out the effect of horizontal multidimensionality, we used a frequently utilised approach (MR-Egger), which implores the 
presence of horizontal multidimensionality if the interception term is statistically significant [18]. We also used the powerful (MR-PRESSO 
method to eliminate potential horizontal pleiotropic outliers, which could have affected the estimation results of the MR-PRESSO package 
[19]. Additionally, Steiger-filtering analyses were conducted to detect and eliminate genetic variants more strongly associated with the out-
come than the exposure, demonstrating possible reverse causality [20].

All statistical analyses were conducted with R software 4.3.1 (R Foundation) and specific R packages (‘TwoSampleMR’ and ‘MR’) tailored for 
MR analysis [21, 22]. 

Results

The causal role of PCBCs and UGI cancers

The causal role of PCBCs and EC

Figure 2 summarises the causal effect estimates of circulating blood count on susceptibility to EC. We found a strong positive causal asso-
ciation between EC risk circulating basophil cell count (OR = 1.416, 95% CI = 1.125–1.783, p = 0.003). However, no significant correlations 
were observed between monocyte, lymphocyte, eosinophil or neutrophil counts and EC susceptibility. 

Neither the MR-Egger intercept test nor Cochran’s Q test showed pleiotropy or heterogeneity (Tables S1 and S2). Additionally, scatter plots 
Figure 3A and funnel plots Figure 3B were employed to analyse the data, effectively reducing the likelihood of potential outliers and horizon-
tal pleiotropy affecting any of the identified basophil cells.

Figure 2. The causal estimation between basophil cell count and EC. We selected IVW as a primary method p < 0.05 showed statistical significant; OR 
value >1 indicated a risk factor.
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Figure 3. (a): The scatter plot demonstrating the genetic associations of basophil cell count on the risk of EC. (b): The funnel plot represents IVs for each 
significant causal relation between basophil cell count and EC. 

The causal role of PCBCs and GC

IVW results suggested a risk effect of basophil cell count (OR = 1.623, 95% CI = 1.052–2.505, p = 0.029) on GC risk (Figure 4). However, 
no significant correlations were seen between basophil cell count, monocyte cell count, lymphocyte cell count or neutrophil cell count and 
GC. Neither the MR-Egger intercept test nor Cochran’s Q test revealed pleiotropy or heterogeneity (Tables S3 and S4). Additionally, scatter 
plots Figure 5A and funnel plots Figure 5B were employed to analyse the data, effectively reducing the likelihood of potential outliers and 
horizontal pleiotropy affecting any of the identified basophil cells.

a

b
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Figure 4. The causal estimation between basophil cell count and GC. We selected IVW as a primary method p < 0.05 showed statistically significant; OR 
value >1 indicated a risk factor. 

Figure 5. (a): The scatter plot demonstrating the genetic associations of basophil cell count on the risk of GC. (b): The funnel plot represents IVs for each 
significant causal relation between basophil cell count and GC. 

a

b
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Discussion

MR analysis has been frequently employed to illustrate possible causality between risk factors and diseases [19]. In this MR study, we used 
MR to investigate the causal correlations between PCBCs and UGI cancer. The results indicate that higher basophil levels may elevate the 
risk of UGI cancer, thus expanding our comprehension of the potential cancer-causing roles of these cells. Basophils, a type of white blood 
cell, are naturally present in small quantities in the bloodstream. They are essential for the immune system and play a crucial role in both 
hypersensitivity reactions and fighting against parasitic infections. Basophils are recognised for their ability to produce and release inflam-
matory substances like histamine and cytokines, which contribute to the body’s immune response [23, 24]. Elevated and reduced levels of 
basophils in peripheral blood may be linked to the progression of specific types of solid tumors in humans [25, 26]. 

Basophils derived from stem progenitor cells are found in the bone marrow [27–29]. In both humans and mice, interleukin-3 (IL-3) serves as 
the primary growth factor essential for basophils maturation [30–33]. Several studies have indicated that basophils in these species can be 
cultured in vitro. This is achieved by incubating bone marrow cells or, in humans, CD34* precursors with IL-3 for a duration of 10–14 days 
[30, 34–36]. Although IL-3 plays a crucial role in the establishment of basophils from their precursors, additional growth factors contribute to 
their expansion and function. For instance, the combination of Feline McDonough Sarcoma-like tyrosine kinase 3 ligand with IL-3 has been 
demonstrated to enhance basophil production in cultures [37]. Moreover, research by Siracusa et al [38] revealed that mouse basophils could 
be produced using thymic stromal lymphopoietin (TSLP), which involves the heterodimeric TSLP receptor (TSLPR/IL-7Ro) [38]. This study 
further suggests that IL-3 and TSLP can stimulate the polarization of two different types of basophils in mice, each characterised by unique 
gene expression profiles and functions [39].

In terms of the function of PCBCs in UGI cancer, basophils have not generated much interest due to their scarce dissemination and relatively 
unexplored functions. Basophils perform an essential role in hypersensitivity diseases and type 1 hypersensitivity responses [40]. In addition, 
they are recruited to tissues following parasitic, bacterial and viral infections. Subsequent establishment of basophil removal antibodies and 
basophil-deficient mouse models has recently provided a greater understanding of basophil biology beyond allergic reactions [41]. Conse-
quently, a potential relationship between basophils and tumor immunity may also exist [42]. Basophils not only enhance humoral immune 
function but also liberate intracellular agents causing anti-tumor immunity [43–45], including the chemokines CCL3 and CCL4, which expe-
dite CD8+ T-cell infiltration [43], and the chemokines TNF-α and IL-6, which enhance inflammatory anti-tumor responses [46, 47]. Some 
studies have reported that basophils have favorable survival outcomes in melanoma [48, 49], ovarian cancer [50], endometrial [51], sarcoma 
cancers [52], non-small cell lung cancer [53] and glioblastoma [54], while basopenia is correlated with a worse prognosis for colorectal can-
cer [55, 56]. On the other hand, basophilia has been linked to better outcomes in patients with melanoma who undergoing immunotherapy 
treatment [49]. The above findings are inconsistent with our results demonstrating that basophils were strongly associated with UGI cancer 
and that increased basophil counts may contribute to reduced survival.

Dvorak’s [57] seminal discovery of piecemeal degranulation in basophils in human pancreatic cancer (PC) set the stage for subsequent inves-
tigations. Extensive research has been conducted to explore basophils’ involvement in human pancreatic ductal adenocarcinoma (PDAC) 
[58]. In those patients with PDAC, basophils expressing IL4 have been found in tumor-draining lymph nodes (TDLNs), and their presence 
emerged as an independent negative prognosis indicator for patient survival. Investigating basophils’ function in PC was further conducted 
in basophil-deficient Mcpt8-Cre mice [59] and wild-type (WT) mice. Following PC implantation, cancer was observed in 80% of WT mice but 
was notably absent in the Mcpt8-Cre mice. The basophils in TDLNs were observed, and the role of cancer-associated fibroblasts in releasing 
TSLP was noted, which in turn activated dendritic cells (DCs) to generate IL-3 from CD4* T cells. Both DCs and CD14* monocytes secreted 
CCL7, triggering the migration of basophils into TDLNs. Once activated by IL-3, the basophils assumed a pro-tumorigenic role, secreting IL-4 
and thereby promoting Th2 and M2 polarization. In another interesting study, in the advanced stage of chronic myeloid leukemia (CML), 
basophilia was also found to be accumulated [60] and a notable reduction in the IKAROS, a transcription factor in these patient’s bone 
marrow, was observed [61]. CML patient-derived basophils were found to express HIGF, promoting the expansion of CML cells [62]. Fur-
thermore, in a mouse CML model, basophil-derived CCL3 was implicated in promoting CML progression [63]. Basophilia was recognised as 
an independent predictor of acute myeloid leukemia that progressed from myelodysplastic syndrome [64, 65]. These observations are sup-
ported by our results that basophils are the risk factors in UGI cancer, where elevated basophil counts may correlate with diminished survival.

In other solid tumor types, such as GCs [7] and prostate [4], adverse effects related to tissue infiltrating or circulating basophils have been 
reported. Notably, in bladder cancer patients, the initial basophil count has been identified as a predictor of recurrence following tumor 
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resection and bacillus Calmette–Guérin therapy [5]. In contrast, a study using a mouse model of breast cancer (BC) revealed that basopenia, 
or a low basophil count, correlated with an increased number of pulmonary metastases [66]. However, no significant correlation has been 
established between basophils and prognosis in BC patients [67]. This variation in findings suggests that the local tumor microenvironment 
might dictate whether basophils exhibit pro-tumor or anti-tumor effects, potentially explaining their inconsistent impact on survival across 
different cancer types [26]. Basophils play a crucial role in supporting humoral immunity, mainly by secreting molecules that modulate B-cell 
function. Activated basophils can express CD40L, IL-4 and IL-6, which are vital in sustaining B-cell proliferation and boosting IgM and IgG1 
production. Research by Rodriguez Gomez et al [45] have demonstrated that basophils, both in vitro and in vivo, are instrumental in promot-
ing plasma cell survival [24, 45]. Our research aligns with these findings, particularly highlighting a strong association of basophils with UGI 
cancer, supporting the broader implications of basophils in cancer dynamics.

Strength and limitations

Our two-sample MR analysis was designed to analyse the causal relationships between PCBCs in UGI cancer using large-sample GWAS 
and UK Biobank data. This design reduced the limitations of traditional observational studies by eliminating the influence of confounding 
factors and reverse causality. In addition, MR mitigates the representativeness and feasibility issues inherent to RCTs. However, there are 
several limitations to this study. First, it depended on publicly accessible GWAS and UK Biobank data, which prevented further exploration 
of the impact of other relevant factors on UGI cancers, such as gender, age and body mass index [68]. Second, these findings can only be 
generalised to European populations, as that was the sample present in the original GWAS and UK Biobank, and further study is needed in 
different ethnic subgroups [69]. Third, even with multi-sensitivity analysis, horizontal pleiotropy could not be comprehensively evaluated. 
Finally, we employed wider thresholds for assessing the findings, which may grow false positives but also enable a more critical assessment 
of the association between circulating blood cell characteristics and UGI cancer. In addition, this study covered a wide range of circulating 
blood cells, but the functions and mechanisms of circulating blood cells in disease are not yet fully understood, which limits our interpretation 
of the findings from the MR analysis.

Conclusion

In summary, our MR analysis offers evidence suggesting a potential causal relationship between PCBCs and the risk of UGI cancer. The 
results highlight the possible role of basophils as a risk factor for UGI cancer, emphasising the importance of further research to elucidate the 
underlying mechanisms. Understanding the causal link between basophils and UGI cancer may offer valuable insights for the development of 
targeted preventive and therapeutic strategies, potentially contributing to improved outcomes for individuals at risk of this disease.
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Supplementary tables

Table S1. The pleiotropy of causal relationship between basophil and EC. The p-values for the 
MR-Egger intercept were above 0.05, suggesting that no significant pleiotropy effects were 
found.

Exposure Egger_intercept SE pval

basophil cell count || id:ieu-b-29 −0.001505142 0.006200437 0.808548701

monocyte cell count || id:ieu-b-31 −0.001403486 0.003515935 0.690005147

lymphocyte cell count || id:ieu-b-32 0.000821016 0.004785895 0.863892238

eosinophil cell count || id:ieu-b-33 −0.005860566 0.004378537 0.181700556

neutrophil cell count || id:ieu-b-34 −0.006988986 0.004891447 0.154147906

Table S2. The heterogeneity of causal relationship between basophil and EC. The p-values for the 
Cochran’s Q yielded were above 0.05, suggesting that no significant heterogeneity effects were found.

Exposure Method Q Qdf Q_pval

basophil cell count || id:ieu-b-29 MR Egger 141.0684498 143 0.529994006

basophil cell count || id:ieu-b-29 IVW 141.1273762 144 0.552131124

white blood cell count || id:ieu-b-30 MR Egger 348.5353123 338 0.334817873

white blood cell count || id:ieu-b-30 IVW 353.080672 339 0.288089873

monocyte cell count || id:ieu-b-31 MR Egger 336.8186378 350 0.684145589

monocyte cell count || id:ieu-b-31 IVW 336.9779813 351 0.695392153

lymphocyte cell count || id:ieu-b-32 MR Egger 407.529816 346 0.012605061

lymphocyte cell count || id:ieu-b-32 IVW 407.5644785 347 0.013819915

eosinophil cell count || id:ieu-b-33 MR Egger 297.5814706 317 0.776649093

eosinophil cell count || id:ieu-b-33 IVW 299.372988 318 0.76637903

neutrophil cell count || id:ieu-b-34 MR Egger 311.3277161 286 0.145268396

neutrophil cell count || id:ieu-b-34 IVW 313.5500296 287 0.134935357

Table S3. The pleiotropy of causal relationship between basophil and GC. The 
p-values for the MR-Egger intercept were above 0.05, suggesting that no sig-
nificant pleiotropy effects were found.

Exposure Egger_intercept SE pval

basophil cell count −0.0007975280 0.010195 0.937726

white blood cell count −0.0079861412 0.006827 0.24264

monocyte cell count −0.0011968404 0.005511 0.828149

lymphocyte cell count 0.0089755673 0.006665 0.178682

eosinophil cell count 0.0005035087 0.006925 0.942069

neutrophil cell count −0.0070981274 0.007169 0.322676
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Table S4. The heterogeneity of causal relationship between basophil and GC. The p-values for the 
Cochran’s Q yielded were above 0.05, suggesting that no significant heterogeneity effects were 
found.

Exposure Method Q Qdf Q_pval

basophil cell count || id:ieu-b-29 MR Egger 172.0774212 193 0.858093

basophil cell count || id:ieu-b-29 IVW 172.083541 194 0.869356

white blood cell count || id:ieu-b-30 MR Egger 443.5311811 479 0.875717

white blood cell count || id:ieu-b-30 IVW 444.8997452 480 0.872869

monocyte cell count || id:ieu-b-31 MR Egger 485.7211764 491 0.558736

monocyte cell count || id:ieu-b-31 IVW 485.7683485 492 0.570727

lymphocyte cell count || id:ieu-b-32 MR Egger 441.321151 493 0.95407

lymphocyte cell count || id:ieu-b-32 IVW 443.1348629 494 0.951136

eosinophil cell count || id:ieu-b-33 MR Egger 375.737826 433 0.9781

eosinophil cell count || id:ieu-b-33 IVW 375.743113 434 0.979847

neutrophil cell count || id:ieu-b-34 MR Egger 413.3696256 412 0.471746

neutrophil cell count || id:ieu-b-34 IVW 414.3533065 413 0.472006
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