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Abstract

Precision immunotherapy is a crucial approach to improve the efficacy of anti-cancer treat-
ments, particularly in the metastatic setting. In this respect, accurate patient selection takes 
advantage of the multidimensional integration of patients’ clinical information and tumour-
specific biomarkers status. Among these biomarkers, programmed death-ligand 1, tumour-
infiltrating lymphocytes, microsatellite instability, mismatch repair and tumour mutational 
burden have been widely investigated. However, novel tumour-specific biomarkers and 
testing methods will further improve patients’ outcomes. Here, we discuss the currently 
available strategies for the implementation of a precision immunotherapy approach in the 
clinical management of metastatic solid tumours and highlight future perspectives.
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Introduction

Immune checkpoint inhibition has been increasingly applied in several solid tumours, with 
significant survival benefits, providing a precise patient selection [1–3]. Hence, not all 
the patients, even in the presence of similar clinical characteristics, would respond in 
the same way to the same immunotherapy protocol [4]. Furthermore, the toxicity and 
adverse events of such agents are not uncommon and should be taken into account while 
assessing the patient’s eligibility [5, 6]. In this scenario, the application of tailored immu-
notherapy schemes is of great importance. 

In this era of histology-agnostic approvals, the identification of tumour-specific biomark-
ers and interpretation guidelines is a growing opportunity [7, 8]. Currently, the most stud-
ied immune-related biomarkers include programmed death-ligand 1 (PD-L1), tumour-
infiltrating lymphocytes (TILs), microsatellite instability (MSI), mismatch repair (MMR) 
and tumour mutational burden (TMB) [9]. The level of approval of these tests is shown 
in Figure 1. There are currently multiple lines of evidence on the overall better response 
rate of TMB-high, MSI-high and PD-L1POS tumours treated with immunotherapy [10, 11]. 
Additionally, there are several indications that candidate complementary and/ or sur-
rogate biomarkers (e.g. phosphatase and tensin homologue ) may contribute to an opti-
mal patient selection [12–16]. Novel means of mutation measurement as comprehensive 
genomic profiling (CGP) are currently being explored in this setting [17]. 
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Tumour-specific biomarkers, coupled with companion diagnostics (CDx), may enhance the process of precise patients’ selection, leading to 
a higher probability of reaching satisfying clinical outcomes [18]. In this review article, we illustrate the impacts and gaps of biomarkers sug-
gested by previous clinical trials and translational research studies in immuno-oncology treatments. A particular focus will be given on the 
hopes and facts behind the concept of ‘precision immunotherapy’. 

Immunotherapy in clinical practice

Cancer cells can evade the immune system through downregulation or loss of tumour antigens and alterations in the expression of costimu-
latory and coinhibitory molecules [19, 20]. Under normal conditions, antigens conjugated with major histocompatibility complex (MHC) 
molecules are presented on the surface of cancer cells. These antigens can be recognised by T cells possessing the same MHC alleles 
through T-cell receptors–antigen/MHC interactions [21]. For an optimal T cell response, a second signal mediated by co-stimulatory mol-
ecules is required. CD28 binds to CD80 and/or CD86, which are present on the surface of activated antigen-presenting cells [22]. Cytotoxic 
T-lymphocyte antigen 4 (CTLA4) is homologous to CD28 and similarly binds to CD80 or CD86, preventing the attachment of CD28 to these 
surface proteins. In other words, CTLA4 is a negative regulatory molecule of T cell activation [22, 23]. The pharmacologic inhibition of CTLA4 
is one of the possible approaches employed in cancer immunotherapy [22]. The checkpoint axis programmed cell death protein 1 (PD-1)/
PD-L1 is another widely explored target [24]. When PD-1 binds to its ligands named as PD-L1 and PD-L2, T cells undergo a negative regula-
tory process referred to as immune checkpoint [25]. Antibodies that block PD-1 or PD-L1 lead to activation of T cells which can subsequently 
recognise and attack cancer cells [26]. The therapeutic antibody ipilimumab, targeting CTLA-4, is the first approved checkpoint inhibitor 
for clinical use in melanoma [27]. Additionally, anti-PD-1 molecules for the management of malignancies such as non-small cell lung cancer 
(NSCLC), renal cell carcinoma (RCC), Hodgkin lymphoma, melanoma, urothelial carcinoma, metastatic colorectal cancer and hepatocellular 
carcinoma are Food and Drugs Administration (FDA)-consented to be prescribed [28], as summarised in Table 1. Clinical use of immune 
checkpoint inhibitors (ICPis) may bring along undesired side effects termed as immune-related adverse events (irAEs) [29]. Reportedly, anti-
CTLA-4 therapy often results in more severe side effects comparing to other immunotherapy agents [30]. Organs such as intestine, liver, 
lung, skin and endocrine glands are frequently affected by immunotherapy toxicity [31]. Around 13%–17% of NSCLC patients treated with 
anti-PD-1 experienced grade 3 or higher toxicities [32]. Yet, less than 20% of patients show high-grade toxicity when treated with anti-PD-1 
and/or anti-PD-L1 [33]. Most of the side effects are tackled by corticosteroids and other adjunctive medications effectively [34].

Figure 1. Schematic representation of the main fields of applications of MMR/MSI, PD-L1, TMB testing in patients’ selection for immunotherapy. 
Tumours are depicted in the columns, while the application of the test in the rows. The colour-coded circles refer to the selected testing method 
provided on the bottom left legend. The circles are distributed among different anatomical sites based on their clinical utility, as reported on the column 
placed on the left. MMR, mismatch repair; MSI, microsatellite instability; PD-L1, programmed cell death ligand 1; TMB, tumour mutational burden; IHC, 
immunohistochemistry; HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma. 

https://doi.org/10.3332/ecancer.2020.1150


Re
vi

ew

ecancer 2020, 14:1150; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2020.1150 3

Table 1. Summary of immune checkpoint blockade therapies which have been approved by the FDA for being applied in clinical practices.  
https://www.fda.gov/

A
nt

ib
od

y Immunotherapy Trading name Cancer type Indications Date of  
approval

 a
nt

i–
PD

-L
1

Durvalumab O IMFINZI, AstraZeneca
+
etoposide and either  
carboplatin or cisplatin

Extensive-stage small cell lung cancer 
(ES-SCLC)

First-line treatment March 30, 
2020

O IMFINZI, AstraZeneca Inc. Unresectable stage III
non-small cell lung cancer (NSCLC)

Disease should not be progressed 
following concurrent platinum-based 
chemotherapy and radiation therapy

February 
16, 2018

O IMFINZI, AstraZeneca UK 
Limited)

locally advanced or metastatic
urothelial carcinoma

disease progression during or following 
platinum-containing chemotherapy 
or within 12 months of neoadjuvant 
or adjuvant treatment with platinum-
containing chemotherapy

May 1, 
2017

Avelumab O BAVENCIO, EMD Serono 
Inc.
+
axitinib

Advanced renal cell carcinoma (RCC) First-line treatment May 14, 
2019

O BAVENCIO, EMD Serono, 
Inc.

Locally advanced or metastatic urothe-
lial carcinoma

Progressed disease during or following 
platinum-containing chemotherapy or 
within 12 months of neoadjuvant or 
adjuvant platinum-containing chemo-
therapy

May 9, 
2017

O BAVENCIO, EMD Serono, 
Inc.

Metastatic Merkel cell carcinoma 
(MCC).

The first FDA-approved product to 
treat this type of cancer.
For 12 years and older

March 23, 
2017

Atezolizumab O TECENTRIQ®, Genentech 
Inc.

Metastatic non-small cell lung cancer 
(NSCLC)

first-line treatment
adults with high PD-L1 expression 
(PD-L1 stained ≥ 50% of tumour cells 
[TC ≥ 50%] or PD-L1 stained tumour-
infiltrating immune cells [IC] covering 
≥ 10% of the tumour area [IC ≥ 10%]), 
with no EGFR or ALK genomic tumour 
aberrations. 

May 18, 
2020

O TECENTRIQ, Genentech  
Inc.
+
paclitaxel protein-bound  and 
carboplatin

Metastatic  non-squamous non-small 
cell lung cancer (NSCLC)

First-line treatment for adults
(with no EGFR or ALK genomic  
tumour aberrations)

December 
3, 2019

O TECENTRIQ, Genentech Inc.
+
carboplatin and etoposide

Extensive-stage small cell lung cancer 
(ES-SCLC)

First-line treatment for adults March 18, 
2019

O TECENTRIQ, Genentech Inc.
+
paclitaxel protein-bound

Unresectable locally advanced or met-
astatic triple-negative breast cancer

PD-L1 (SP142) positive March 8, 
2019
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Table 1. (Continued)

O TECENTRIQ, Genentech, 
Inc.
+
bevacizumab, paclitaxel, and 
carboplatin

Metastatic non-squamous, non-small 
cell lung cancer (NSq NSCLC)

First-line treatment of patients with 
no EGFR or ALK genomic tumour 
aberrations.

December 
6, 2018

O TECENTRIQ, Genentech Inc. Locally advanced or metastatic urothe-
lial carcinoma

Not eligible for cisplatin-containing 
chemotherapy, and whose tumours 
express PD-L1 (PD-L1 stained tumour-
infiltrating immune cells [IC] covering 
≥5% of the tumour area)
Or
Not eligible for any platinum-containing 
therapy regardless of level of tumour  
PD-L1 expression

August 16, 
2018.

O TECENTRIQ, Genentech 
Oncology

Metastatic non-small cell lung cancer 
(NSCLC)

Progressed disease during or following 
platinum-containing chemotherapy

EGFR or ALK genomic tumour aberra-
tions with disease progression

October 
18, 2016

O TECENTRIQ, Genentech Inc. Locally advanced or metastatic urothe-
lial carcinoma

Disease progression during or follow-
ing platinum-containing chemotherapy
or
Progression within 12 months of neo-
adjuvant or adjuvant treatment with 
platinum-containing chemotherapy

May 18, 
2016

an
ti–

PD
-1

Nivolumab O OPDIVO, Bristol-Myers 
Squibb Company.

Metastatic small cell lung cancer 
(SCLC)

Progression after platinum-based 
chemotherapy and at least one other 
line of therapy

August 16, 
2018

O OPDIVO, Bristol-Myers 
Squibb Company

Melanoma Adjuvant treatment with involvement 
of lymph nodes or with metastatic 
disease who have undergone complete 
resection.

December 
20, 2017

O OPDIVO, Bristol-Myers 
Squibb Co.

Hepatocellular carcinoma (HCC) Previously treated with sorafenib. September 
22, 2017

O OPDIVO, Bristol-Myers 
Squibb Co.

Metastatic colorectal cancer -12 years and older
-Mismatch repair deficient (dMMR) 
and microsatellite instability high 
(MSI-H)
-Malignancy progressed following 
treatment with a fluoropyrimidine, 
oxaliplatin, and irinotecan

August 1, 
2017

O OPDIVO, Bristol-Myers 
Squibb Co.

Locally advanced or metastatic urothe-
lial carcinoma

Progression during or following 
platinum-containing chemotherapy
or
Have disease progression within 12 
months of neoadjuvant or adjuvant 
treatment with a platinum-containing 
chemotherapy

February 
2, 2017
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Table 1. (Continued)

O OPDIVO, Bristol-Myers 
Squibb Co.

Recurrent or metastatic squamous 
cell carcinoma of the head and neck 
(SCCHN)

Progression on or after a platinum-
based therapy

November 
10, 2016

O OPDIVO, Bristol-Myers 
Squibb Co

Advanced renal cell carcinoma Patients who have received prior anti-
angiogenic therapy

November 
23, 2015

O OPDIVO, Bristol-Myers 
Squibb Co

Metastatic non-small cell lung cancer 
(NSCLC)

Progression on or after platinum-based 
chemotherapy.
EGFR or ALK genomic tumour aberra-
tions should have disease progression 
on FDA-approved therapy for these 
aberrations prior to therapy

October 9, 
2015

O OPDIVO, Bristol-Myers 
Squibb Co

Unresectable or metastatic melanoma Progression following ipilimumab and, 
if BRAF V600 mutation positive, a 
BRAF inhibitor

December 
22, 2014

pembrolizumab O KEYTRUDA, Merck & Co. 
Inc

New dosing regimen 400 mg every 6 weeks for pembroli-
zumab across all currently approved 
adult indications, in addition to the 
current 200 mg every three weeks 
dosing regimen.

April 28, 
2020

O KEYTRUDA, Merck & Co. 
Inc.

Bacillus Calmette-Guerin (BCG)-
unresponsive, high-risk, non-muscle 
invasive bladder cancer (NMIBC)

With carcinoma in situ (CIS) with or 
without papillary tumours who are 
ineligible for or have elected not to 
undergo cystectomy.

January 8, 
2020

O KEYTRUDA, Merck
+
lenvatinib (LENVIMA, Eisai)

Advanced endometrial carcinoma That is not microsatellite instability 
high (MSI-H) or mismatch repair defi-
cient (dMMR)
Have disease progression following 
prior systemic therapy but are not 
candidates for curative surgery or 
radiation.

September 
17, 2019

O KEYTRUDA, Merck & Co. 
Inc.

Advanced esophageal squamous cell 
cancer

Tumour PD-L1 expression (Combined 
Positive Score [CPS] ≥10), determined 
by an FDA-approved test

Disease progression after one or more 
prior lines of systemic therapy.

July 30, 
2019

O KEYTRUDA, Merck & Co. 
Inc.

Metastatic small cell lung cancer 
(SCLC)

Disease  progression on or after 
platinum-based chemotherapy and at 
least one other prior  line of therapy.

June 17, 
2019

O KEYTRUDA, Merck & Co. 
Inc.

Metastatic small cell lung cancer 
(SCLC)

Disease progression on or after 
platinum-based chemotherapy and at 
least one other prior  line of therapy.

June 
17,2019

O KEYTRUDA, Merck & Co. 
Inc.

Metastatic or unresectable recurrent 
head and neck squamous cell carci-
noma (HNSCC)

First-line treatment June 10, 
2019

O KEYTRUDA, Merck & Co. 
Inc.
+
axitinib

Advanced renal cell carcinoma (RCC) First-line treatment April 19, 
2019
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Table 1. (Continued)

O KEYTRUDA, Merck & Co. 
Inc.

Stage III non-small cell lung cancer 
(NSCLC)

First-line treatment
-Not candidates for surgical resection 
or definitive chemoradiation or meta-
static NSCLC.
-Patients’ tumours must have no 
EGFR or ALK genomic aberrations and 
express PD-L1 (Tumour Proportion 
Score [TPS] ≥1%) determined by an 
FDA-approved test.

April 11, 
2019

O KEYTRUDA, Merck & Co. 
Inc.

Melanoma Adjuvant treatment
-With involvement of lymph node(s) 
following complete resection.

February 
15, 2019

O KEYTRUDA, Merck & Co. 
Inc.

Recurrent locally advanced or meta-
static Merkel cell carcinoma (MCC)

Adult and pediatric patients December 
19, 2018

O KEYTRUDA, Merck & Co. 
Inc.

Hepatocellular carcinoma (HCC) Previously treated with sorafenib November 
9, 2018

O KEYTRUDA, Merck & Co. 
Inc.
+
carboplatin and either pacli-
taxel or nab-paclitaxel

Metastatic squamous non-small cell 
lung cancer (NSCLC)

First-line treatment October 
30, 2018

O KEYTRUDA, Merck & Co. 
Inc.
+
Pemetrexed,platinum

Metastatic, non-squamous non-small 
cell lung cancer (NSqNSCLC)

First-line treatment 
with no EGFR or ALK genomic tumour 
aberrations

August 20, 
2018

O KEYTRUDA, Merck & Co. 
Inc

Locally advanced or metastatic  
urothelial cancer

PD-L1 levels evaluation in tumour tissue
who are cisplatin-ineligible.
PD-L1 expression CPS ≥ 10 as deter-
mined by an FDA-approved test
Or
not eligible for any platinum-containing 
chemotherapy regardless of PD-L1 
status

August 16, 
2018

O KEYTRUDA, Merck & Co. 
Inc

Refractory primary mediastinal large 
B-cell lymphoma (PMBCL)

Treatment of adult and pediatric 
patients,
relapsed after two or more prior lines 
of therapy.

June 13, 
2018

O KEYTRUDA, Merck & Co. 
Inc

Recurrent or metastatic cervical cancer Disease progression on or after che-
motherapy
PD-L1 expression (CPS ≥1) as deter-
mined by an FDA-approved test

June 12, 
2018

O KEYTRUDA, Merck & Co. 
Inc

Recurrent locally advanced or 
metastatic, gastric or gastroesophageal 
junction adenocarcinoma

PD-L1 expression as determined by an 
FDA-approved test
Disease progression on or after two or 
more prior systemic fluoropyrimidine- 
and platinum-containing chemothera-
py and, HER2/neu-targeted therapy 

September 
22, 2017
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Table 1. (Continued)

O KEYTRUDA, Merck & Co. 
Inc

Unresectable or metastatic colorectal 
cancer

Adult and pediatric patients
unresectable or metastatic, MSI-H 
or dMMR solid tumours progressed 
following prior treatment with no satis-
factory alternative treatment options
or
MSI-H or dMMR colorectal cancer that 
has progressed following treatment 
with a fluoropyrimidine, oxaliplatin, 
and irinotecan.

May 23, 
2017

O KEYTRUDA, Merck & Co. 
Inc

Locally advanced or metastatic urothe-
lial carcinoma

Disease progression during or follow-
ing platinum-containing chemotherapy 
or within 12 months of neoadjuvant 
or adjuvant treatment with platinum-
containing chemotherapy.

May 18, 
2017

O KEYTRUDA, Merck & Co. 
Inc
+
pemetrexed and carboplatin

Metastatic non-squamous non-small  
cell lung cancer (NSCLC)

Previously untreated May 10, 
2017

O KEYTRUDA, Merck & Co. 
Inc

Metastatic non-small cell lung cancer 
(NSCLC)

Tumours express PD-L1 as determined 
by an FDA-approved test

October 
24, 2016

O KEYTRUDA, Merck & Co. 
Inc

Recurrent or metastatic head and neck 
squamous cell carcinoma (HNSCC)

Disease progression on or after 
platinum-containing chemotherapy

August 5, 
2016

O KEYTRUDA, Merck & Co. 
Inc

Unresectable or metastatic melanoma . December 
18, 2015

O KEYTRUDA, Merck & Co. 
Inc

Metastatic non-small cell lung cancer 
(NSCLC)

Tumours express PD-L1 as determined 
by an FDA-approved test, with disease 
progression on or after platinum-con-
taining chemotherapy

October 2, 
2015

O KEYTRUDA, Merck & Co. 
Inc

Unresectable or metastatic melanoma Disease progression following ipilim-
umab
BRAF V600 mutation positive

September 
4, 2014

an
ti-

CT
LA

4

Ipilimumab O YERVOY, Bristol-Myers 
Squibb Company

Cutaneous melanoma Additional indication of adjuvant treat-
ment of patients
Pathologic involvement of regional 
lymph nodes of more than 1 mm who 
have undergone complete resection, 
including total lymphadenectomy

October 
28, 2015

O YERVOY, Bristol-Myers 
Squibb Company

Unresectable or metastatic melanoma March 25, 
2011

Nivolumab
+
ipilimumab

O nivolumab (OPDIVO, 
Bristol-Myers Squibb Co.)
+
ipilimumab (YERVOY,  
Bristol-Myers Squibb Co.)
+ 2 cycles of platinum-doublet 
chemotherapy

Metastatic or recurrent non-small 
cell lung cancer (NSCLC), with no 
epidermal

As first-line treatment
With growth factor receptor (EGFR) 
or anaplastic lymphoma kinase(ALK) 
genomic tumour aberrations.

May 26, 
2020
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Table 1. (Continued)

Co
m

bi
na

tio
n 

th
er

ap
y

O nivolumab (OPDIVO, 
Bristol-Myers Squibb Co.)
+
ipilimumab (YERVOY,  
Bristol-Myers Squibb Co.)

Metastatic non-small cell lung cancer As first-line treatment
Tumours express PD-L1(≥1%), as de-
termined by an FDA-approved test
With no epidermal growth factor 
receptor (EGFR) or anaplastic lym-
phoma kinase (ALK) genomic tumour 
aberrations

May 15, 
2020

O nivolumab (OPDIVO,  
Bristol-Myers Squibb Co.)
+
ipilimumab (YERVOY,  
Bristol-Myers Squibb Co.)

Hepatocellular carcinoma (HCC) Previously treated with sorafenib.. March 10, 
2020

O nivolumab (OPDIVO, 
Bristol-Myers Squibb Co.)
+
ipilimumab (YERVOY,  
Bristol-Myers Squibb Co.)

Advanced renal cell carcinoma Intermediate or poor risk 
previously untreated

April 16, 
2018

O nivolumab (OPDIVO,  
Bristol-Myers Squibb Co.)
+
ipilimumab (YERVOY,  
Bristol-Myers Squibb Co.)

Unresectable or metastatic melanoma With BRAF V600 wild-type September 
30, 2015

https://www.fda.gov/
O approved
O accelerated approva
O updated prescribing information
ALK: anaplastic lymphoma kinase; EGFR: epidermal growth factor receptor; HER2: human epidermal growth factor receptor 2

The quantum leap of immune-related biomarkers

Programmed death ligand 1 (PD-L1) 

In 2015, FDA approved pembrolizumab as the first PD-1 inhibitor in NSCLC [35]. Since then, different clones of the antibody against PD-1 
ligand, such as SP142 (Ventana Medical Systems), SP263 (Ventana Medical Systems) and 22C3 (Dako North America, Inc.) were validated as 
specific biomarkers for patient selection [36]. Immunohistochemistry (IHC) assessment of PD-L1 is employed for patient selection in several 
cancers [37]. PD-L1 evaluation differs in each tumour type, thus a conclusive protocol may not fit all malignancies. For instance, tumour pro-
portion score (TPS) which is functional in lung cancer cannot be tailored for head and neck cancer, and vice versa for the combined positive 
score (CPS) [38]. TPS considers PD-L1-positivity merely in neoplastic cells, whereas CPS considers the positivity of tumour cells, lymphocytes 
and macrophages. CPS equals the number of PD-L1 positive tumour cells and lymphocytes, divided by the total number of viable tumour 
cells, multiplied by 100. Another example is represented by triple-negative breast cancers (TNBC), where the CDx test for this indication was 
PD-L1 (SP142) IHC Assay by using the immune cell (IC) scoring system [39]. IC scoring was considered as positive, for those with the pres-
ence of PD-L1POS ICs that covered more than 1% of the tumour area (tumour cells, associated intratumoural and contiguous peritumoural 
stroma) [2]. The PD-L1 scoring systems are shown in Figure 2. Pre-analytical and informative phases of PD-L1 testing have been coordinated 
in NSCLC where the propagative application of PD-L1 testing in clinical practices indicated coinciding results, mostly by using the 22C3 
antibody clone [40]. PD-L1 plays a significant role in the NSCLC treatment profile. In this malignancy, PD-L1 expression is assessed by TPS 
of membrane expression [41]. Based on KEYNOTE-042 (NCT02220894), pembrolizumab is approved as the first-line treatment of stage III 
NSCLC patients with no epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) genomic aberrations, while also the 
tumour must express PD-L1 (TPS ≥1%) [42].
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Figure 2. Schematic representation of the available scoring criteria for PD-L1 assessment. CPS counts for both tumour and mononuclear cells which 
are PD-L1pos among total viable tumour cells, multiplied by 100. While TPS and IC are contributed to PD-L1pos, tumour cells and mononuclear cells, 
respectively, divided by total number of viable tumour cells. PD-L1 stained and unstained tumour and mononuclear cells are depicted on the left bottom 
legend. PD-L1, programmed cell death ligand 1, CPS, combined positive score; TPS, tumour proportion score; IC, immune cell.

PD-L1 assessment is debated among scientists. In head and neck squamous cell carcinoma (HNSCC), irrespective of PD-L1 expression 
status, immunotherapy with nivolumab and pembrolizumab is consented by FDA for the second-line treatment of recurrent and/or meta-
static HNSCC [43]. These agents show a greater overall survival (OS) in comparison with the standard, single-agent treatment in those with 
platinum-refractory, recurrent or metastatic HNSCC [44]. According to Ferris et al individuals treated with nivolumab, regardless of tumour 
PD-L1 expression, appeared to have greater OS than those treated with standard therapy. However, they noted that patients with a tumour 
PD-L1 expression level of more than 1% may benefit more from nivolumab therapy than those whose PD-L1 level was less than 1% [45]. 

In HNSCC, CPS is recommended for PD-L1 evaluation, where CPS > 20 represents a significantly longer OS [46]. In melanoma, tumours with 
PD-L1-overexpression are related to a fairly high response rate (>50%) and longer progression-free survival (PFS) and OS [47]. In PD-L1 
positive, advanced and refractory gastric cancer (GC), those treated with pembrolizumab presented a greater objective response rate (ORR). 
Added to this, PD-L1 negative cases had also shown responses [48]. Regarding RCC, a meta-analysis comprising 4,063 patients suggested a 
greater OS and PFS in PD-L1 positive tumours [49]. In urothelial carcinoma, patients with high PD-L1 expression had a greater ORR and OS 
rate [50]. In TNBC, studies indicate that PD-L1 is highly expressed which suggests a potential role for immunotherapy [51]. Pembrolizumab 
implies durable anti-cancer effects in a small subset of PD-L1 positive metastatic TNBC [52]. 

Tumour-infiltrating lymphocytes (TILs)

Leukocytes are thought to be involved in both protumour and antitumour activities [53–55]. Molecular factors formed by ICs may lead to cancer 
cells’ fate of death or survival [4]. Lymphocytes migrated within tumour stroma or the tumour itself are termed as TILs [56]. In 2014, the Interna-
tional TILs Working Group (ITWG) suggested a standardised methodology for evaluating TILs with detailed information and instruction with step 
to step tutorial in breast cancer setting [57]. Later on, in 2017, other solid tumours were also included in the ITWG study framework [58] along 
with other studies confirmations or updates [59, 60]. Accordingly, TILs assessment is performed on haematoxylin and eosin slides by consider-
ing both the stromal and the intra-tumour cell compartments [61]. Stromal TILs (sTILs) refer to the area occupied by mononuclear inflammatory 
cells over the total stromal area, while intra-tumoural TILs (iTILs) are related to the tumour cell area [62]. sTILs and iTILs ought to be reported 
separately to avoid the effect of tumour cell density and growth pattern on the TIL count. Another reason for reporting individually is that in 
many tumours the density of TIL is different in both compartments [57]. After defining stromal and intra-tumoural areas with low magnification, 
the type of inflammatory infiltrates is supposed to be determined [61]. Based on the tumour type, either TILs subtypes or one of them needs 
to be evaluated. For example, in breast cancer, only sTILs provide valuable information [57]. Apart from TILs, other complementary biomarkers 
such as the CD4, CD8 and forkhead box P3 are of great relevance in the assessment of TILs function [63, 64]. 
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The lymphocytic infiltration in primary cutaneous melanoma was originally noted by Clark et al in almost half a decade ago [65]. Later on, 
Day et al [65] provided data that highlighted the prognostic significance of infiltrated lymphocytes within tumours . The College of American 
Pathologist has divided TILs in melanoma into three groups, namely Brisk (i.e. diffuse permeation of the invasive tumour), non-Brisk (i.e. 
focally infiltrating lymphocytes) and not identified subsets [66]. A recent meta-analysis demonstrated non-brisk TILs as a favourable prog-
nostic biomarker in melanoma [64]. 

In breast cancer, the presence of TILs has been thoroughly investigated, leading to interesting insights. Specifically, increased levels of TILs 
in TNBC have been associated with better OS and disease-free survival [67]. Another interesting study suggested that sTILs can identify 
a subset of stage I TNBC patients with exceptional prognosis without adjuvant chemotherapy [68]. Moreover, early-stage HER2POS breast 
cancer patients with the presence of TILs have been found to benefit when treated with trastuzumab and chemotherapy [69, 70]. However, 
according to De Angelis et al [71] HER2POS breast cancers with the presence of TILs above the threshold of 60%, established by the authors, 
were marginally associated with higher pathologic complete response rate when treated with lapatinib plus trastuzumab. 

In GC, sTILs positivity has been associated with favourable prognosis [72, 73]. According to a systematic review and quantitative meta-
analysis, including 43 studies, it has been suggested that high-density TILs also present a favourable prognosis in colorectal cancer [74]. In 
patients with high-grade serous carcinoma of the ovary, TILs levels may be associated with chemotherapeutic sensitivity [75]. Interestingly, 
TILs have also been reported as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic NSCLC or metastatic 
melanoma [76]. However, in RCC, high TILs expression has been suggested to be correlated with poor prognosis [77]. All these studies make 
evident the extremely important role of TILs across different cancer types while they highlight the need for the discovery of essential infor-
mation hidden behind TILs evaluation.

Finally, in malignant pleural mesotheliomas (MPMs), low CD4POS and high CD8POS sTILs are associated with poor patients’ survival [78]. In 
MPMs PD-L1 CPS > 1, stromal CD8HIGH seems to be a poor prognostic factor, while stromal CD4POS peritumoural TILs correlate with a worse 
prognosis [78]. In these tumours, a high CD4POS/CD8POS ratio in the immune microenvironment is an independent prognostic factor for sur-
vival. All these recent observations provide novel insights into the clinical scenario of immune-related biomarkers in MPM.

MMR deficiency and MSI 

During the DNA recombination process, strands may detach and reanneal incorrectly, leading to mismatches [79]. However, during evo-
lution, cells have developed strategies to identify and repair these errors. Within this DNA repair network, the mismatch repair (MMR) 
system is capable of solving insertion/deletion or base-base disparities on DNA [79, 80]. Six MMR proteins—mutL homologue 1 (MLH1), 
mutL homologue 3 (MLH3), mutS homologue 2 (MSH2), mutS homologue 3 (MSH3), mutS homologue 6 (MSH6) and postmeiotic segre-
gation increased 2 (PMS2)—work coordinately within five complexes to repair mismatches [81]. Deficiency in the compartments of this 
system may result in modifications in repeated-sequence motifs, termed as microsatellites [79, 80].

Replication errors are more probable in microsatellites due to their repeated structure [82]. Hence, they are considered a potential biomarker 
for identifying MMR malfunction. The presence of multiple alterations in the length of microsatellites is defined as MSI [83]. MMR/MSI test-
ing is utilised mainly to identify potential Lynch syndrome families. MLH1, MSH2, MSH6 and PMS2 proteins are assessed by IHC antibodies. 
This evaluation is preferred as one of the most cost-effective and available means of measurement [84]. MSI detection is generally performed 
through polymerase chain reaction (PCR) approaches by amplifying microsatellite markers with PCR-based methods and detecting MSI by 
measuring the length of the fragments [85]. Next-generation sequencing (NGS) with higher sensitivity is also being used to detect MSI in 
various malignancies [86]. In colorectal [87], ovarian [88], endometrial [89] and GC [90], MMR malfunction/MSI is reported as a prognostic 
biomarker. Contrary, it has been shown that in breast cancer, IHC and MSI testing are not interchangeable tests meaning that each type of 
cancer requires different and optimised management [8, 91].

The role of gene signature evaluation has become more blatant when FDA related novel immunotherapies to MMR and MSI status regardless 
of primary tumour site [92]. For the first time in 2017, the FDA approved the use of immunotherapy based on patients’ MMR/MSI status. 
Accordingly, MMR-deficient and MSI-high metastatic colorectal cancer with progression following treatment with fluoropyrimidine, oxali-
platin and irinotecan were permitted for anti-PD-1 treatment. This accelerated approval was related to nivolumab (OPDIVO, Bristol-Myers 
Squibb Company) [93]. Later on, in 2018, another accelerated approval was granted, adding ipilimumab (YERVOY, Bristol-Myers Squibb 
Company Inc.) as a combination therapy to nivolumab of those patients previously noted in 2017 [94] (Table 1). 
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Tumour mutational burden (TMB)

The concept of TMB refers to the number of somatic coding DNA mutations in the tumour exome [95]. TMB is noted as a beneficial bio-
marker in tumour immunotherapy [96]. Genetically unstable characteristics of cancer cells raise the possibility of somatic mutations result-
ing in neoantigens [97]. Diverse types of tumours display a different load of somatic mutations [97]. To date, melanoma and NSCLC show 
the highest frequencies of mutations [98]. As PD-L1 expression is reported to be highly heterogeneous, predicting the efficacy of immune 
checkpoint inhibitors (ICPis) in NSCLC is not yet feasible by this biomarker. Hence TMB has shown a new perspective in identifying the most 
fitting candidates for immunotherapy [99]. According to Hellmann et al [100], combination therapy of nivolumab and ipilimumab results in a 
greater PFS in high TMB cases. Remarkably, this study considered patients regardless of PD-L1 expression . Another study indicated a posi-
tive relation between atezolizumab efficacy and high level of TMB, resulting in improved ORR and duration of response in other tumours 
[101]. These findings suggested the importance of TMB assessment regardless of PD-L1 expression.

Generally, TMB is performed on the DNA extracted from tumour tissue, however, the analysis of circulating tumour DNA (ctDNA) is being 
investigated in the clinical practice, particularly in follow-up settings [102, 103]. The gold standard method for assessing TMB is whole-
exome sequencing (WES) by using NGS technology [104]. This technology estimates the neoantigen load based on somatic nonsynonymous 
coding mutations [95]. WES highlights the presence of mutations in around 22,000 genes which makes it an expensive and time-consuming 
application to run [95, 97]. Targeted NGS panels are being used routinely in the clinic for oncogenic mutation detection [97]. A standardised 
guideline that clearly states methods and analytical validation are of importance as there are several platforms with similar targeted panels 
and technologies [105].

CGP assays

CGP is a targeted assay with great value in personalised cancer care transformation [106]. This assay identifies genomic alterations including 
mutations, copy number variants (amplification) and fusions (rearrangements), associated with targeted therapy opportunities in clinically 
relevant cancer genes [107]. TMB reports the number of mutations per megabase. However, there is no agreed threshold in existing assays 
with similar intended use [108]. Friends of Cancer Research and Quality Assurance Initiative Pathology joined to come up with harmonise and 
standardise TMB testing results [109]. FoundationOne® CDx is an approved CDx test by FDA [110]. This CDx identifies genetic alterations in 
324 genes, MSI and TMB by extracting DNA from formalin-fixed paraffin-embedded tumour tissue specimens. The sequenced DNA is then 
evaluated for the presence or absence of mutations [108]. Another FDA-approved testing panel is IMPACT which utilises NGS to identify the 
presence of mutations in 468 unique genes, as well as other molecular changes [111]. This assay has more than 99% accuracy with the ability 
to detect mutations at a frequency of 2 to 5 percent [111]. Rizvi et al [112] showed that TMB quantified by targeted NGS closely correlates 
with TMB as quantified by WES. However, not all NGS panels may be well suited to estimate TMB. 

Biomarkers and precision immunotherapy future prospectives (hope)

ICPis therapies have significantly improved precise treatment in several types of solid tumours [113]. Immunotherapy based on immune 
checkpoints is being widely expanded in clinical practice by gaining FDA approval in different antibody settings [114]. As listed in Table 1, 
PD-L1 was approved by the FDA as a biomarker in the line of predicting response to ICPis in several solid tumours [115]. FDA has also 
approved the application of other biomarkers such as MMR and MSI for colorectal cancer in both monotherapy and combination therapy 
[116]. Added to these, several other biomarkers and therapies are under the process of accelerated approval which is expected to add more 
value to ICPis therapy in the near future (Table 1). 

Mechanisms associated with ICPIs resistance and predictive biomarkers for ICPis therapy are being actively studied [117]. Immuno-
therapy efficacy is strictly related to the tumour microenvironment (TME) [118]. Hence, studying components within TME is of interest 
in forthcoming studies. For instance, myeloid-derived suppressor cells (MDSCs), as a component of TME, are associated with ICPIs inhibi-
tion [119]. Reportedly, immunotherapy response can be improved by blocking MDSC activity [120]. Also, a correlation between MDSCs 
expression and poor OS and PFS is noted [121]. Another perspective issue focuses on stimulating T cell responses in which elevated co-
stimulatory molecules result in favourable anti-tumour alterations [121]. For example, inducible T-cell co-stimulator, an indicator of T cell-
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mediated immune response, that enables early prediction of therapeutic response over multiple treatment regimens [122]. The combina-
tion of epigenetic modulator inhibitors with ICPis represents another promising approach in cancer management; as epigenetic alterations 
may downregulate tumour antigens by disturbing immune recognition [123]. Hong et al [124] used nivolumab in order to target epigenetic 
modulators which significantly increased apoptosis. The application of neoantigen vaccines as modulators of the immune microenviron-
ment is another upcoming topic. Neoantigens resulted in mutations, may give rise to immune responses [125]. As a result, synthesised 
peptides may induce CD4POS and CD8POS T cell responses [126]. Reportedly, low mutation load and low T cell infiltrating TME are suitable 
candidates for vaccination [127]. Genetically engineered oncolytic viruses are also of interest. OVs destroy tumour cells by selectively 
replicating in these cells and inducing systematic anti-tumour immune responses [128]. Several clinical trials are under investigation in 
combining OV with cancer immunotherapies [129]. Last but not least, gut microbial alterations may lead to the additional possibility of 
cancer treatment. The gut microbiome is considered as a potential biomarker for ICPis response [121]. Modulation of the gut microbiome 
to enhance therapeutic response is being tested in multiple ongoing clinical studies [130]. Accordingly, antibiotic consumption before 
ICPIs had worse OS than unexposed patients [131]. 

Several studies suggest potential improvement of ICPis efficacy in combination with treatments such as chemotherapy, radiation and 
targeted therapy. These treatments can modulate the TME resulting in increased immunogenicity [132, 133]. Thus, upcoming findings 
in novel combinations of therapeutic agents may hopefully unravel the current gap of partial effectiveness of single-agent ICPis therapy 
[134]. Chemotherapy and radiotherapy are not only able to kill cancer cells directly but also present immunomodulatory properties [135]. 
Destruction of cancer cells with chemotherapy agents can be followed by the release of tumour-associated antigens that activate immune 
response as well as reduction of immunosuppressive cells such as MDSCs and Tregs [136, 137]. Radiation not only causes the release of 
tumour antigens but also improves antigen presentation and TIL infiltration stimulating an immune response [138]. Interestingly, studies 
have tested the efficacy of either chemotherapy plus ICPis or administration of ICPis after radiotherapy reporting encouraging results 
[139–141], while high-expectation clinical trials are ongoing (e.g. NCT04262687, NCT03453892). Targeted therapy presents similar 
immunomodulatory effects [132]. A phase 2 ongoing trial (NCT02954536) evaluated the safety profile and activity of pembrolizumab in 
combination with trastuzumab and chemotherapy in first-line HER2-positive metastatic gastric, oesophageal and gastroesophageal junc-
tion cancer. The response rate of 91% and median OS (27·3 months) were improved compared to the response rate (47%) and median 
OS (16 months) previously reported for chemotherapy plus trastuzumab. According to this trial, pembrolizumab can be safely combined 
with trastuzumab and chemotherapy and has promising activity in HER2-positive metastatic esophagogastric cancer [142]. Trastuzumab 
in combination with pembrolizumab may enhance HER2-specific T-cell responses and improve T cell and dendritic cell trafficking [142]. 
Other benefits of targeted therapy along with immunotherapy cross-talk could be seen in anti-PD-1 antibody treatment in combination 
with lenvatinib. This combinatory treatment mainly targets vascular endothelial growth factor and fibroblast growth factor receptors in 
patients with advanced endometrial cancers. In this study, lenvatinib reduced tumour-associated macrophages and increased the percent-
age of activated CD8POS T cells secreting interferon [143].

A promising application of ICPis can also be found in neoadjuvant therapy as recent publications note neoadjuvant immunotherapy 
may result in better clinical efficacy over an adjuvant application ICPis may also be used in the neoadjuvant setting since recent studies 
support that neoadjuvant immunotherapy can result in better clinical efficacy compared to the corresponding adjuvant therapy [144]. 
Added to all dated advancements, common means of time-consuming and painful tissue biopsies may be replaced by ctDNA in the 
peripheral blood [145, 146]. Most tumours are highly heterogeneous and may change during the progression of the disease. To define 
optimal therapeutic strategies, temporal sampling is mandatory. However, tissue biopsies are not always easy to perform since the 
tumour site may not be accessible and may not be representative of the whole tumour. Thus, the innovative approach of ‘liquid biopsy’ 
is gaining more and more attention. The fast turnover of tumour cells leads to a constant release in the peripheral blood of circulating 
tumour cells (CTCs) and cell-free ctDNA [147]. CTCs are believed to be passively spread from the primary and/or metastatic tumour 
sites into the bloodstream and may be responsible for the establishment of distant metastases. The liquid biopsy approach allows a 
repetitive and less invasive interrogation of tumours’ evolution, making sample collection much easier and efficient both for patients 
and clinicians [148]. All these improvements which are usually based on well-validated principles of certain biomarkers give hope for 
better results in precision immunotherapy.
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Pitfalls in biomarker-based patients’ selection (reality)

ICPis have drastically transformed cancer treatment profiles by giving hope to physicians in cancer management [149]. However, a significant 
proportion of patients do not benefit from immunotherapy (with an ORR of only 20% to 23%) [150]. Biomarkers are therefore applied for the 
finest patient selection. Yet, assortment based on a single biomarker does not appear to be highly efficient [3]. Thus far, numerous gaps should 
be considered carefully to achieve optimal therapeutic benefit [151]. As stated by Pagni et al [4] ‘we do need biomarkers’ to target immune-
related pathways in precise therapy. PD-L1 plays a great role as a biomarker [151]. Despite the availability and low cost of PD-L1 assessment by 
IHC, several technical issues are related to this method. Firstly, the IHC assessment of PD-L1 has limited accuracy due to tumour heterogeneity 
[151]. Moreover, several antibody clones produced by different companies are used in clinical trials; this variety of antibody clones is mystifying 
[153]. Added to this, different scoring methodologies—iTILs, sTILs, pTILs—which vary in different tumour types, potentially lead to confusion 
[154]. Besides, the PD-L1 assessment by itself does not grant to come up with an optimal therapeutic strategy [155]. 

Resistance to pharmacotherapy is a major issue that prevents a significant subset of patients from responding to PD-1/PD-L1 blockade. 
Thus, tumour immune microenvironment classification may lighten up the reasons behind [156]. When PD-L1 expression is accompanied 
by the presence of TILs, it characterises an adaptive resistance of tumours related to the PD-1 pathway (type-I). When both PD-L1 and TILs 
are not sufficient, termed as immunologically ignorant, ICs do not migrate toward cancer cells (type II). Positive PD-L1 and negative TILs lead 
to the induction of PD-L1 expression in tumour cells (type III). Contrary, low PD-L1 expression with optimal TILs is referred to as tolerance 
since the present TILs do not induce PD-L1 expression (type IV) [157]. Ultimately, the goal is to harmonise the patient’s TME with sufficient 
PD-L1 and TILs [158]. Added to these, not only ICPis response may remain temporarily, with the median duration of response of 1 to 2 years 
in NSCLC, but it can also result in resistance after the initial response [159]. The mechanisms behind therapeutic resistance are essential to 
address details of current misfunctions. Yet, introducing proper immunotherapeutic agents and related biomarkers to highlight malfunction 
is of necessity [160].

Several studies have reported TILs as a potential prognostic and predictive marker in various types of cancer [66]. Even though the TILs work-
ing group recommended standardised methodologies for the assessment of immuno-oncology biomarkers/TILs in different malignancies, the 
efficacy of this evaluation is suggested to be assessed by a large cohort of studies on all solid tumours [161]. MMR-wise, different methods 
of evaluation such as IHC, MSI and TMB are introduced to evaluate MMR status, hence a single method of assessment could provide more 
uniform and reliable results [81]. Several institutions perform TMB measurements mostly based on targeted NGS [97]. Despite WES is the gold 
standard method, usually, it is time-consuming and not affordable to run routinely [104]. Moreover, dedicated platforms are not available in all 
pathology laboratories [162]. As an alternative, panel-based NGS assays are of use to measure TMB. However, TMB levels are variable among 
each tumour type and cut-off values need to be established to reliably assess this emerging biomarker. [163]. Regarding adverse events, like-
wise other medications, ICPis administration brings along unwanted effects [164]. Auto-immune reactions are among the most common side 
effects and they can be presented as simple skin rashes but also as severe neurologic, hematologic, cardiac and respiratory implications [165]. 
These can be initiated by nonspecific activations of the immune system through different mechanisms. It is of note that about 2% of irAEs lead 
to treatment-related deaths, varying by ICPis [33]. Above all, further irAE may have not been documented yet as ICPis have only recently been 
introduced in therapeutic schemes. Consequently, a more detailed investigation is needed to fully approve ICPis safety profile [149]. 

The excessive cost of immunotherapy can be considered another important limiting factor [162]. Despite great importance, the economical 
aspect of this therapy has not been shielded to date [166]. ICPis therapies ought to be bearable so that not only patients can benefit from 
the latest therapies but also scientists could implement expanded databases for additional validations of their investigations.

Conclusion

Cancer is a complicated malignancy that involves several mechanisms and immune-related pathways. Therefore, a combination of innovative 
therapeutic strategies that rely on precise biomarkers has to be developed to profoundly address this issue [167]. Precision immunotherapy 
has already started to light up a new era in cancer management. It is fair to conclude that several struggles are yet to be addressed in patients’ 
selection for immunotherapy. We highlight the importance of implementing tumour-specific tests and precise guidelines in routine clinical 
practice for optimal therapeutic outcomes.
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