A new measure of the heterogeneity – the variety of genetic mutations – of cells within a tumour appears to predict treatment outcomes of patients with the most common type of head and neck cancer.
In Cancer, investigators at Massachusetts General Hospital (MGH) and Massachusetts Eye and Ear Infirmary describe how their measure was a better predictor of survival than most traditional risk factors in a small group of patients with squamous cell carcinoma of the head and neck.
"Our findings will eventually allow better matching of treatments to individual patients, based on this characteristic of their tumours," says Edmund Mroz, PhD, of the MGH Center for Cancer Research, lead author of the Cancer report.
"This method of measuring heterogeneity can be applied to most types of cancer, so our work should help researchers determine whether a similar relationship between heterogeneity and outcome occurs in other tumours."
For decades investigators have hypothesized that tumours with a high degree of genetic heterogeneity – the result of different subgroups of cells undergoing different mutations at different DNA sites – would be more difficult to treat because particular subgroups might be more likely to survive a particular drug or radiation or to have spread before diagnosis.
While recent studies have identified specific genes and proteins that can confer treatment resistance in tumours, there previously has been no way of conveniently measuring tumour heterogeneity.
Working in the laboratory of James Rocco, MD, PhD – director of the Mass. Eye and Ear /MGH Head and Neck Molecular Oncology Research Laboratory, principal investigator at the MGH Center for Cancer Research and senior author of the Cancer report – Mroz and his colleagues developed their new measure by analyzing advanced gene sequencing data to produce a value reflecting the genetic diversity within a tumour – not only the number of genetic mutations but how broadly particular mutations are shared within different subgroups of tumour cells.
They first described this measure, called mutant-allele tumour heterogeneity (MATH), in the March 2013 issue of Oral Oncology. But that paper was only able to show that patients with known factors predicting poor outcomes – including specific mutations in the TP53 gene or a lack of infection with the human papillomavirus (HPV) – were likely to have higher MATH values.
In the current study, the investigators used MATH to analyze genetic data from the tumours of 74 patients with squamous cell head and neck carcinoma for whom they had complete treatment and outcome information. Not only did they find that higher MATH values were strongly associated with shorter overall survival – with each unit of increase reflecting a 5 percent increase in the risk of death – but that relationship was also seen within groups of patients already at risk for poor outcome. For example, among patients with HPV-negative tumours, those with higher MATH values were less likely to survive than those with lower MATH values. Overall, MATH values were more strongly related to outcomes than most previously identified risk factors and improved outcome predictions based on all other risk factors the researchers examined.
The impact of MATH value on outcome appeared strongest among patients treated with chemotherapy, which may reflect a greater likelihood that highly heterogeneous tumours contain treatment-resistant cells, Mroz says. He also notes that what reduces the chance of survival appears to be the subgroups of cells with different mutations within a tumour, not the process of mutation itself. "If all the tumour cells have gone through the same series of mutations, a single treatment might still be able to kill all of them. But if there are subgroups with different sets of mutations, one subgroup might be resistant to one type of treatment, while another subgroup might resist a different therapy."
In addition to combining MATH values with clinical characteristics to better predict a patient's chance of successful treatment, Mroz notes that MATH could someday help determine treatment choice – directing the use of more aggressive therapies against tumours with higher values, while allowing patients with lower values to receive less intense standard treatment. While MATH will probably be just as useful at predicting outcomes for other solid tumours, the investigators note, that will need to be shown in future studies.
"Our results have important implications for the future of oncology care," says Rocco, the Daniel Miller Associate Professor of Otology and Laryngology at Harvard Medical School. "MATH offers a simple, quantitative way to test hypotheses about intratumor genetic heterogeneity, including the likelihood that targeted therapy will succeed. They also raise important questions about how genetic heterogeneity develops within a tumor and whether heterogeneity can be exploited therapeutically."
Source: Massachusetts General Hospital
We are an independent charity and are not backed by a large company or society. We raise every penny ourselves to improve the standards of cancer care through education. You can help us continue our work to address inequalities in cancer care by making a donation.
Any donation, however small, contributes directly towards the costs of creating and sharing free oncology education.
Together we can get better outcomes for patients by tackling global inequalities in access to the results of cancer research.
Thank you for your support.