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Abstract

The vast genetic alterations characteristic of tumours produce a number of tumour antigens that enable the immune system to differentiate  
tumour cells from normal cells. Counter to this, tumour cells have developed mechanisms by which to evade host immunity in their  
constant quest for growth and survival. Tumour-associated antigens (TAAs) are one of the fundamental triggers of the immune response. 
They are important because they activate, via major histocompatibility complex (MHC), the T cell response, an important line of defense 
against tumourigenesis. However, the persistence of tumours despite host immunity implies that tumour cells develop immune avoidance. 
An example of this is the up-regulation of inhibitory immune checkpoint proteins, by tumours, which induces a form of self-tolerance. The 
majority of monoclonal antibodies in clinical practice have been developed to target tumour-specific antigens. More recently there has been 
research in the down-regulation of immune checkpoint proteins as a way of increasing anti-tumour immunity.

Keywords: adaptive immunity, tumour-associated antigens, CTLA4, PD-1, PDL-1, monoclonal antibody, immune tolerance



Re
vi

ew

 2 www.ecancer.org

ecancer 2014, 8:441

Introduction

Tumours do not grow in isolation, but exist within a complex network of structures, cells, and chemical signals ranging from epithelial cells, 
stroma, blood, and lymphatic vasculature, immune cells, cytokines, and chemokines. The vast genetic alterations characteristic of tumours 
produce a number of tumour antigens that enable the immune system to differentiate tumour cells from normal cells. Counter to this, tumour 
cells have developed mechanisms by which to evade host immunity in their constant quest for growth and survival.

A typical tumour structure includes the tumour core, the invasive margin, and the surrounding stromal and lymphoid components. Within 
all of these is a heterogeneous immune infiltrate that can be diverse from patient to patient, as well as within different metastatic sites of a 
single patient. A typical tumour will contain all immune cell-types, including macrophages, dendritic cells, natural killer (NK) cells, mast cells, 
B cells, and T cells [including T helper 1 (TH1), T helper 2 (TH2), regulatory T cells (TReg) and cytotoxic T cells]. Within this immune milieu 
there are components that are beneficial, as well as components that are deleterious to the patient. Histopathological analysis of tumours 
has identified that different immune cells may be found in different locations within a tumour. The variation in density and distribution of 
immune cells within tumours is thought to affect clinical outcome [1]. Although the innate immune response plays a role in anti-tumour 
immunity, detailed discussion is beyond the scope of this review, which will focus on the adaptive immune response.

Adaptive immunity and the control of tumour growth

Tumour-associated antigens (TAAs) are one of the fundamental triggers of the immune response. They are important because they  
activate, via, major histocompatibility complex (MHC), the T cell response, an important line of defense against tumourigenesis. 

TAAs that are recognised by T cells are classified in Table 1. The review is restricted to TAAs recognised by T cells as these represent the 
main therapeutic targets in oncology. Although TAAs arise by different mechanisms, they are all presented to T cells via MHC class I or II 
on antigen presenting cells. This triggers T cell activation with expression of co-stimulatory molecules and secretion of chemokines and 
cytokines. The effect is to drive clonal expansion of the T cell as well as to recruit other immune effector cells (including components of the 
innate immune system). CD4 T cells, also known as T helper cells, secrete cytokines and chemokines that regulate different aspects of 
the immune response. TH1 CD4 T cells activate CD8 T cells, favouring cellular immunity. TH2 CD4 T cells act on B cells, favouring humoral 
immunity. CD8 T cells, which are directly cytotoxic, are activated both by direct presentation of antigen, via MHC class I, or via CD4  
T cell-mediated activation. Ultimately, the tumour cell is destroyed by direct cell-mediated cytotoxicity as well an indirect antibody  
complement-mediated cytotoxicity [2].

Immune editing and evasion

The persistence of tumours despite host immunity implies that tumour cells develop immune avoidance. There are a number of mechanisms 
by which this may occur. Some tumours have been demonstrated to lose expression of MHC molecules making them unable to present 
tumour antigens, thus evading T cell recognition. Some tumours secrete immunosuppressive cytokines, e.g., IL-10. There are tumours that 
grow within their own immune-privileged site by generating physical barriers, e.g., collagen and fibrin, thus making them invisible to the 
immune system.

Tumours can also evade the immune response by up-regulating inhibitory molecules and inducing a form of self-tolerance [4]. Immune  
checkpoints are vital for maintenance of self-tolerance and protection of normal tissue from damage at the site of an immune response. Specific 
regulatory cells and inhibitory receptors achieve immune tolerance. Regulatory T cells (TReg) are immunosuppressive. They secrete inhibitory 
cytokines, such as IL-10 and TGFβ, resulting in down-regulation of effector B and T cells [5]. T cells rely on co-stimulatory signals to generate 
an immune response. Inhibition of co-stimulatory signals helps to maintain immune tolerance. Cytotoxic T-lymphocyte associated antigen 4 
(CTLA4) and programmed cell death protein 1(PD1) are both inhibitory receptors involved in down-regulation of immune responses.

There is currently a lot of interest in the down-regulation of immune checkpoint proteins as a way of increasing anti-tumour immunity.  
Antibodies against CTLA-4 and PD-1 have been tested in therapeutic trials, which are discussed below. 
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Table 1. Classification of tumour-associated antigens that are recognised by T cells [3].

Classification of tumour antigen Mechanism of immune activation Example

Cancer-testis antigens Normal expression found in spermatocytes in  
testis (occasionally placenta), which is an  
immune-privileged site. Therefore, expression  
elsewhere in the body triggers T cell activation.

MAGE (melanoma antigen)
BAGE (B antigen)
GAGE (G antigen)

Differentiation antigens Antigen is expressed by the tumour and the 
normal tissue from which it arose.

CEA – expressed in embryonic tissue and  
over-expressed in colorectal cancer.
Gp100 – expressed in melanocytes and 
melanoma.
PSA – expressed in normal prostate and  
over-expressed in prostate cancer.

Over-expressed tumour- 
associated antigens

Level of expression in normal tissue is below the 
threshold for T cell activation. Over- expression  
by malignant cells overrides tolerance and  
triggers T cell activation.

Her2 – over-expressed in breast cancer.
AFP – over-expressed in hepatocellular 
cancer and certain germ cell tumours.

Tumour-specific antigens These arise from genetic mutations or splicing  
aberrations, generating a protein that is foreign  
to the host immune system.

Mutant K-RAS in colorectal cancer.

Fusion proteins Chromosomal translocation in certain tumours  
results in fusion of distant genes and expression  
of an abnormal fusion protein that is foreign to 
the host immune system.

BCR-ABL in CML and some ALL.
EML4-ALK in non-small cell lung cancer.

CEA: carcinoembryonic antigen,
PSA: prostate specific antigen,
Her2: human epidermal receptor 2,
AFP: alpha-fetoprotein,
BCR-ABL: break point cluster region-Abelson,
EML4-ALK: echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase, 
CML: chronic myeloid leukaemia, 
ALL: acute lymphoblastic leukaemia.

Tumour immunology and clinical outcome

In many cancers there is a demonstrable correlation between level of immune cell infiltration and prognosis. Different populations of cells 
within the immune infiltrate affect prognosis in different ways. There are a lot of published data correlating prognosis with type of immune 
cell infiltrate. Table 2 summarises some of the data. 

Most recently it has been demonstrated that the higher the proportion of tumour infiltrating lymphocytes on core biopsy of breast cancer, 
the greater the likelihood of a pathological complete remission following neoadjuvant chemotherapy and Herceptin, in Her2-positive 
breast cancer. This data was reported at the 2013 San Antonio Breast Cancer Symposium where the team demonstrated a correlation 
between level of tumour-infiltrating lymphocytes and immune activation as well as clinical outcome, implying a pre-existing anti-tumour 
immunity. They also reported an association between high expression of inhibitory receptors PD-1 and CTLA-4, and benefit from  
Herceptin; hypothesizing that Herceptin overcomes tumour-mediated immunosuppression [24]. They used a mouse model of  
Her2-positive breast cancer to demonstrate improved efficacy of Herceptin when combined with a T-cell checkpoint inhibitor, compared 
to Herceptin alone [24].



Re
vi

ew

 4 www.ecancer.org

ecancer 2014, 8:441

Table 2. Correlation of immune cell infiltrate and clinical outcome.

Tumour Type Immune Cell Infiltrate Clinical Outcome

Associated with improved prognosis

Melanoma CD4 T cell infiltrate Better survival and higher association with spontaneous 
tumour regression [6–8].

Breast cancer Intra-tumoural T cell infiltrate, 
including CD8 T cells and Th1 CD4 
T cells.

Improved survival and earlier stage disease [9–12].

Ovarian cancer T cell infiltrate, including CD8 T 
cells.

Improved survival and reduction in VEGF [13–15].

Non-small cell lung cancer CD4 and CD8 T cell infiltrate Improved prognosis in early stage- and advanced stage 
disease [16, 17].

Associated with poor prognosis
Breast cancer High Treg Associated with poor prognosis disease (high-tumour 

grade, oestrogen receptor negative, lymph node positive) 
and reduced disease-free and overall survival [18, 19].

Melanoma High Treg Increased recurrence rate [20].

Ovarian cancer High Treg Associated with poor prognosis [14, 21].

Non-small cell lung cancer High Treg Associated with increased risk of recurrence in resected 
early stage disease [22, 23].

The positive prognostic association of high CD4 and CD8 T cell infiltration within a tumour implies a clinically relevant anti-tumour immune 
response. This response is subject to down-regulation by inhibitory immune cells, including TReg. Therefore, tumours with high TReg infiltration 
may experience less of an anti-tumour immune response, hence the association with poorer clinical outcomes.

Targeting tumour antigens with antibodies

Targeting tumour antigens with antibodies is an established therapeutic for both solid tumours and haematological malignancies. There are 
different categories of tumour antigens that have been targeted by monoclonal antibodies. In haematological malignancies, antibodies have 
been raised against cluster of differentiation (CD) markers on T and B cells. In solid tumours, targets include growth factors, e.g., epidermal 
growth factor receptor (EGFR) and receptor activator of nuclear factor-κB ligand (RANKL), as well as angiogenesis, e.g., vascular endothelial 
growth factor (VEGF). 

There are several mechanisms by which antibodies cause tumour cell death. There is the direct action of the antibody, where binding of  
antibody to the cell causes receptor blockade. This inhibits the downstream signaling pathways within the cell, ultimately leading to  
apoptosis. Immune-mediated mechanisms include antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent  
cytotoxicity (CDC), where the Fc component (rather than the antigen-binding domain) of the antibody is most important. There is also the 
immune modulation of T cell function via inhibition of immune checkpoint proteins by targeted antibodies, e.g., anti-CTLA4 and anti-PD1. 

Using Herceptin as an example, once the antibody has bound to Her2, expressed on the surface of a breast cancer cell, it prevents the 
dimerization of the receptor. Receptor dimerization is necessary for the activation of downstream signaling pathways. Herceptin inhibits 
the MAP kinase and PI3 kinase signaling pathways as well as causing cell cycle arrest, ultimately leading to apoptosis. The Fc component 
of Herceptin can trigger the innate immune response, in particular, NK cells which are directly cytotoxic to the tumour cell. Internalisation 
of Herceptin into the cell results in degradation of the antibody and presentation of antibody proteins to T cells via MHC. T cells are not 
only directly cytotoxic but will recruit other immune cells, including B cells, leading to ADCC. Finally, the Herceptin–Her2 complex results in 
activation of the complement pathway with binding of C1q to the antibody–antigen complex, resulting in cell lysis [25].
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There are antibodies that have been conjugated to a radioisotope or cytotoxic agent to deliver these directly to the tumour cell in therapeutic 
doses. Conjugation of a radioisotope to antibody is used as a therapeutic in lymphoma. Most recently, T-DM1 (trastuzumab-emtansine) has 
shown clinical benefit in Her2-positive metastatic breast cancer where trastuzumab is conjugated to an anti-microtubule agent, emtansine. 
Upon ligand binding, the antibody conjugate becomes internalised into the cell enabling targeted delivery of a cytotoxin. This achieves 
delivery of a cytotoxic dose of a therapeutic agent directly to its target, whilst sparing healthy tissue, hence minimising toxicity [26].

Table 3 summarises examples of antibodies used in clinical practice, either NICE (National Institute for Health and Care Excellence) 
approved or available via the Cancer Drugs Fund (government funding of drugs not yet approved by NICE, available in England).

Table 3. Monoclonal antibodies used in clinical practice. 

Antigen Antibody Clinical Use

Angiogenesis VEGF Bevacizumab Poor risk ovarian cancer [27, 28], triple 
negative breast cancer [29, 30], renal 
cell carcinoma [31], colorectal  
cancer [32–34], NSCLC(35).

Growth Factors EGFR Cetuximab Head and neck squamous cell  
carcinoma [36], KRAS wild-type  
metastatic colorectal cancer [37–40].

ERBB2 Herceptin Adjuvant and metastatic Her2 positive 
breast cancer [41–43].

ERBB2 Pertuzumab Metastatic Her2 positive breast  
cancer [44].

RANKL Denosumab Bone metastases secondary to solid 
tumours [45].

Haemopoieitic antigens CD20 Rituximab Non-Hodgkin’s lymphoma [46, 47].

CD20 Ofatumumab Refractory CLL [48].

CD52 Alemtuzumab CLL [49, 50].

Proteosome 
inhibitor

Bortezomib Myeloma [51].

CD30 Brentuximab Relapsed Hodgkin’s lymphoma [52].

Conjugated Antibodies CD20 90Y-labelled ibritumomab Non-Hodgkin’s lymphoma [53].

CD20 131I-labelled tositumomab Non-Hodgkin’s lymphoma [54, 55].

ERBB2 T-DM1 - ERBB2-emtansine 
(antibody-drug conjugate)

Metastatic Her2 positive breast  
cancer [26].

Immunomodulatory CTLA4 Ipilimumab Metastatic melanoma [56].

NSCLC: non-small cell lung cancer,
CLL: chronic lymphocytic leukaemia.
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Targeting immune checkpoint proteins with antibodies

Anti- CTLA4

Ipilimumab is a monoclonal antibody that blocks CTLA4 with the aim of promoting anti-tumour immunity. CTLA4 is expressed on T cells, 
where it serves to regulate the magnitude of the T cell response. Once the T cell receptor has bound target antigen, the co-stimulatory 
receptor CD28 amplifies T cell signaling. Activated T cells are not only directly cytotoxic but also act to recruit other components of both 
the innate and adaptive immune response.CTLA4 counteracts the activity of the CD28 receptor thus down-regulating individual T cells 
and preventing recruitment of other T and immune effector cells. TReg highly express CTLA4, which enhances their proliferation and 
immunosuppressive activity [57].

Ipilimumab has shown the greatest clinical activity in metastatic melanoma. The pivotal phase III trial demonstrating a survival benefit with 
ipilimumab was published in 2010. There were three arms in the trial, ipilimumab alone, ipilimumab with gp100 (melanoma cancer vaccine), 
and gp100 alone. The two arms treated with ipilimumab showed the same survival suggesting that the active agent was the ipilumumab. 
The patients treated with ipilimumab had a significant survival advantage to those treated with gp100 alone (10.1 months vs. 6.4 months, 
p = 0.003) [56]. Subsequent analyses have shown the survival benefits to be durable. A pooled analysis of 1,861 patients with melanoma 
treated with ipilimumab in 12 prospective and retrospective studies showed that 22% were still alive at 3 years, 17% were alive at 7 years, 
and the longest recorded survival in the database was 9.9 years [58].

The majority of toxicities experienced with ipilimumab were immune-related, mostly affecting skin and GI tract. Diarrhoea was the most 
common immune-related toxicity, occurring in 31% of patients. This manifested as frank colitis in some patients, requiring corticosteroids 
or infliximab (anti-TNF). Other immune-related events included skin rash, vitiligo, and endocrine insufficiencies (thyroid, pituitary, and 
adrenal) [56]. 

Anti-PD-1

PD-1 is expressed on T cells, particularly TReg, its expression being induced when T cells become activated. PD-1 primarily functions in 
peripheral tissues where T cells are exposed to the immunosuppressive PD-1 ligands, PD-L1 and PD-L2, that are expressed by tumour 
cells and surrounding stroma. Once PD-1 has bound one of its ligands, it functions to inhibit kinases responsible for T cell activation, except 
in TReg where binding of PD-1 to ligand enhances their proliferation [57, 59].

Blockade of PD-1 by anti-PD-1 antibody has been tested in phase I. The largest cohort tested included 296 patients with advanced 
solid tumours, including melanoma, NSCLC, renal cell carcinoma, prostate cancer, and colorectal cancer. Responses were observed 
in 20–25% of patients with NSCLC, renal call carcinoma, and melanoma. No responses were observed in patients whose tumour 
specimens were negative for PD-L1. Similar to ipilimumab, responses were durable in some patients, with response duration of a 
year or more [59]. This is impressive given the fact that all patients were heavily pre-treated and no longer responding to conventional 
therapy. 

The most common treatment-related toxicities seen with anti-PD-1 were fatigue, reduced appetite, diarrhoea, nausea, rash, and pruritus. 
Grade 3 or 4 treatment-related adverse events occurred in 14% of patients. Like ipilimumab, anti-PD-1 was associated with immune-related 
toxicity including pneumonitis, vitiligo, colitis, hepatitis, hypophysitis, and thyroiditis. There were three deaths from pulmonary toxicity [59].

There is ongoing interest in targeting PD-1 in different ways, for example, targeting one of the ligands with an anti-PD-L1 antibody, as well 
as combining blockade of PD-1 and CTLA4 [60].
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Conclusion

The tumour microenvironment consists of a complex milieu of cells, including immune cells. Some components of the immune infiltrate 
exert a beneficial anti-tumour effect, while others can down-regulate host immunity, and promote tumour-immune evasion. The proportion 
of the different infiltrates within a tumour has been shown to affect clinical outcome.

Antibody therapy has successfully targeted tumour antigens for many years. Targeted antibodies exert their therapeutic effect not only by 
inhibiting the target but also by activation of the host immune system.There is now increasing interest in using antibodies to up-regulate 
host anti-tumour immunity with some durable results seen in early trials so far.
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